Toán 10 Bài 5: Phương trình đường tròn
Toán 10 Bài 5: Phương trình đường tròn giúp học sinh dễ dàng ghi nhớ kiến thức trọng tâm bài học cũng như áp dụng vào giải toán 10 được thuthuat.tip.edu.vn đăng tải chi tiết trong bài viết dưới đây, mời các bạn tham khảo.
1. Phương trình đường tròn
Phương trình đường tròn tâm I(a; b) bán kính R là
Phương trình đường tròn ở dạng trên thường được gọi là phương trình chính tắc của đường tròn.
Ví dụ 1: Tìm tâm và bán kính của đường tròn (C) có phương trình: . Viết phương trình đường tròn (C’) có tâm J(2; – 1) và có bán kinh gấp đôi bán kính đường tròn (C).
Giải
Ta viết phương trình của (C) ở dạng
Vậy (C) có tâm I = (2;- 3) và bán kinh R= 4.
Đường tròn (C’) có tâm J(2; – 1) và có bán kinh R’= 2R= 8, nên có phương trình
Chú ý: Do có duy nhất một đường tròn đi qua ba điểm không thẳng hàng cho trước nên ta có thể lập được phương trình đường tròn đó khi biết toạ độ của ba điểm nói trên.
Ví dụ 2: Viết phương trình đường tròn (C) đi qua ba điểm A(2; 0), B(0; 4), C(-7: 3).
Giải
Các đoạn thẳng AB, AC tương ứng có trung điểm là M(1 2), . Đường thẳng trung trực của đoạn thằng AB đi qua M(1, 2) và có vectơ pháp tuyến
Vì cùng phương với nên cũng nhận là vectơ pháp tuyến.
Do đó, phương trình của là
1(x – 1) – 2(y – 2)= 0 hay x – 2y + 3 = 0.
Đường thẳng trung trực của đoạn thẳng AC đi qua và có vectơ pháp tuyến .
Vì cùng phương với n; (3 – 1) nên Az cũng nhận n; (3 – 1) là vectơ pháp tuyến.
Do đó, phương trình của là
hay 3x – y + 9 = 0
Tâm I của đường tròn (C) cách đều ba điểm A, B, C nên I là giao điểm của và .
Vậy toạ độ của I là nghiệm của hệ phương trình
Suy ra I(-3; 0). Đường tròn (C) có bán kính là IA = 5. Vậy phương trình của (C) là .
2. Phương trình tiếp tuyến của đường tròn
Phương trình tiếp tuyến của đường tròn tâm I(a, b) tại điểm nằm trên đường tròn là:
Ví dụ: Cho đường tròn (C) có phương trình . Điểm M(0; 1) có thuộc đường tròn (C) hay không? Nếu có, hãy viết phương trình tiếp tuyến tại M của (C).
Giải
Do , nên điểm M thuộc (C).
Đường tròn (C) có tâm là I(-1; 3). Tiếp tuyến của (C) tại M(0; 1) có vectơ pháp tuyến , nên có phương trình
>>>> Toán 10 Bài 6: Ba đường conic
Toán 10 Bài 5: Phương trình đường tròn chương 7 Cánh Diều 10 tập 2 do thuthuat.tip.edu.vn tổng hợp và đăng tải nhằm giúp các em nắm chắc kiến thức, từ đó áp dụng vào giải các bài tập Toán 10 đạt kết quả tốt. Tại chuyên mục Lý thuyết Toán 10 CD có đầy đủ các các bài học chia theo từng chương bám sát chương trình học SGK Cánh diều 10 đồng thời tại chuyên mục Giải Toán 10 Cánh Diều Tập 2 có đầy đủ các bài tập do thuthuat.tip.edu.vn biên soạn để giúp bạn ôn luyện tại nhà.
Xem thêm nhiều bài hơn tại : Đề Thi