Nhẩm nghiệm phương trình bậc 2

0

Contents

Giải phương trình bậc 2 được xem là dạng toán căn bản quan trọng trong chương trình Toán 9 và đề thi tuyển sinh vào lớp 10. Tài liệu dưới đây do đội ngũ thuthuat.tip.edu.vn biên soạn và chia sẻ giúp học sinh hiểu rõ hơn về phương trình bậc 2, nghiệm phương trình bậc 2, các cách tính nhẩm nhanh nghiệm phương trình bậc 2. Qua đó giúp các bạn học sinh rèn luyện tư duy, khái quát vấn đề ôn tập và rèn luyện cho kì thi tuyển sinh vào lớp 10 sắp tới. Mời các bạn học sinh và quý thầy cô cùng tham khảo!

A. Phương trình bậc hai:

a{x^2} + bx + c = 0;left( {a ne 0} right)

B. Hệ thức Vi – ét

– Cơ sở của việc nhẩm nghiệm chính là hệ thức Vi – ét, ta có:

C. Các dạng bài tính nhẩm nghiệm phương trình bậc 2

A{x^2} + Bx + C = 0;left( {A ne 0} right)

1. Dạng 1: A + B + C = 0

Ví dụ: Nhẩm nghiệm của phương trình:

a) x2 – 5x + 4 = 0 b) sqrt 2 {x^2} + left( {1 - sqrt 2 } right)x - 1 = 0

Hướng dẫn giải

a) x2 – 5x + 4 = 0

Ta có:

1 – 5 + 4 = 0

=> Phương trình có hai nghiệm left{ {begin{array}{*{20}{c}}
  {{x_1} = 1} \ 
  {{x_2} = dfrac{4}{1} = 4} 
end{array}} right.

b) sqrt 2 {x^2} + left( {1 - sqrt 2 } right)x - 1 = 0

Ta có: sqrt 2  + left( {1 - sqrt 2 } right) - 1 = 0

=> Phương trình có hai nghiệm left{ {begin{array}{*{20}{c}}
  {{x_1} = 1} \ 
  {{x_2} = dfrac{{ - 1}}{{sqrt 2 }}} 
end{array}} right.

2. Dạng 2: A – B + C = 0

Ví dụ: Nhẩm nghiệm của phương trình:

a) x4 + 4x2 + 3 = 0

b) left( {1 + sqrt 3 } right){x^2} + 2sqrt 3 x - 1 + sqrt 3  = 0

Hướng dẫn giải

a) x4 + 4x2 + 3 = 0

Ta có:

1 – 4 + 3 = 0

=> Phương trình có nghiệm left{ {begin{array}{*{20}{c}}
  {{x_1}^2 =  - 1left( L right)} \ 
  {{x_2}^2 =  - 3left( L right)} 
end{array}} right.

b. left( {1 + sqrt 3 } right){x^2} + 2sqrt 3 x - 1 + sqrt 3  = 0

Ta có: 1 + sqrt 3  - 2sqrt 3  - 1 + sqrt 3  = 0

=> Phương trình có hai nghiệm left{ {begin{array}{*{20}{c}}
  {{x_1} =  - 1} \ 
  {{x_2} = dfrac{{ - 1}}{{1 + sqrt 3 }} = dfrac{{1 - sqrt 3 }}{2}} 
end{array}} right.

3. Dạng 3: A = 1; B = S ( = m + n), C = P (= m.n)

Ví dụ: Nhẩm nghiệm của phương trình:

a) x2 – 2x – 15 = 0 b)  {x^2} - left( {sqrt 2  + sqrt 3 } right)x + sqrt 6  = 0

Hướng dẫn giải

a) x2 – 2x – 15 = 0

Ta có: left{ {begin{array}{*{20}{c}}
  {2 = 5 - 3} \ 
  { - 15 = 5.left( { - 3} right)} 
end{array}} right. Rightarrow left[ {begin{array}{*{20}{c}}
  {{x_1} = 5} \ 
  {{x_2} =  - 3} 
end{array}} right.

b) {x^2} - left( {sqrt 2  + sqrt 3 } right)x + sqrt 6  = 0

Ta có: left{ {begin{array}{*{20}{c}}
  {sqrt 2  + sqrt 3 } \ 
  {sqrt 6  = sqrt 2 .sqrt 3 } 
end{array}} right. Rightarrow left[ {begin{array}{*{20}{c}}
  {{x_1} = sqrt 2 } \ 
  {{x_2} = sqrt 3 } 
end{array}} right.

4. Dạng 4: Hai nghiệm là nghịch đảo của nhau

Ví dụ: Nhẩm nghiệm của phương trình sau: 2x2 – 5x + 2 = 0

Hướng dẫn giải

Ta có:

begin{matrix}
 2{x^2} - 5x + 2 = 0 hfill \
   Leftrightarrow {x^2} - dfrac{5}{2}x + 1 = 0 hfill \
   Leftrightarrow {x^2} - left( {2 + dfrac{1}{2}} right)x + 2.dfrac{1}{2} = 0 hfill \
   Rightarrow left[ {begin{array}{*{20}{c}}
  {{x_1} = 2} \ 
  {{x_2} = dfrac{1}{2}} 
end{array}} right. hfill \ 
end{matrix}

D. Bài tập vận dụng nhẩm nghiệm phương trình

Bài 1: Nhẩm nghiệm của mỗi phương trình sau:

a) 2x2 + 3x – 5 = 0

b) 35x2 – 37x + 2 = 0

c) 2x2 – x – 3 = 0

d) 2{a^2} - left( {2 + sqrt 5 } right)a + sqrt 5  = 0

e) b2 – b – 2 = 0

f) 4321y2 – 21y – 4300 = 0

g) 2{x^2} + left( {sqrt 7  - 2} right)x - sqrt 7  = 0

h) 7x2 + 500x – 507 = 0

i) 2x2 – 5x + 2 = 0

k) 2x2 – 5x + 2 = 0

Bài 2: Nhẩm nghiệm các phương trình:

a) x2 + 2003x – 2004 = 0

b) x2 – 3x – 10 = 0

c) left( {1 + sqrt 3 } right){x^2} + 2sqrt 3 x + sqrt 3  - 1 = 0

d) 4{x^2} - 2sqrt 3 x - 1 = 0

Bài 3: Nhẩm nghiệm các phương trình sau:

a) 3{x^2} - 2sqrt 3 x - 2 = 0 b) x2 – 7x – 2 = 0
c) 2x2 + 5x – 3 = 0

d) 3a2 + 2a + 5 = 0

e) x2 – 5x + 6 = 0

f) 2x2 – 3x + 1 = 0

g) x2 – 6x – 16 = 0

h) x2 – 24x – 70 = 0

i) {x^2} - sqrt 3 x - 2 - sqrt 6  = 0

k) 3x2 + 5x + 61 = 0

m) x2 – 14x + 33 = 0

n) x2 – 14x + 30 = 0

p) {x^2} - left( {1 + sqrt 2 } right)x + sqrt 2  = 0

q) x2 – 10x + 21  = 0

u) 3x2 – 19x – 22 = 0

v) x2 – 12x + 27 = 0

Bài 4:

a) Phương trình x2 – 2px + 5 = 0 có một nghiệm bằng 2. tìm p và nghiệm còn lại của phương trình.

b) Phương trình x2  + 4x + q = 0 có một nghiệm bằng 5. tìm q và nghiệm còn lại của phương trình.

c) Phương trình x2 – 7x + q = 0 có một nghiệm bằng 11. tìm q và nghiệm còn lại của phương trình.

d) Phương trình x2 – qx + 50 = 0 có một nghiệm có hai nghiệm trong đó có một nghiệm gấp đôi nghiệp kia, tìm q và hai nghiệm của phương trình.

Bài 5: Xác định tham số m và tìm nghiệm còn lại của các phương trình:

a) Phương trình x2 + mx – 35 = 0 có một nghiệm bằng -5

b) Phương trình 2x2 – (m + 4)x + m = 0 có một nghiệm bằng -3

c) Phương trình mx2 -2(m – 2)x +m – 3 = 0 có một nghiệm bằng -5

—————————————————–

Hy vọng tài liệu Nghiệm phương trình bậc 2 Toán 9 sẽ giúp ích cho các bạn học sinh học nắm chắc các cách biến đổi biểu thức chứa căn đồng thời học tốt môn Toán lớp 9. Chúc các bạn học tốt, mời các bạn tham khảo!

Tài liệu liên quan:

  • Cho tam giác ABC nội tiếp đường tròn (C) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH
  • Từ điểm M ở bên ngoài đường tròn (O; R) vẽ hai tiếp tuyến MA, MB của (O) (với A, B là các tiếp điểm) và cát tuyến MDE không qua tâm O (D, E thuộc (O), D nằm giữa M và E).
  • Một xe máy đi từ A đến B với vận tốc và thời gian dự tính trước. Sau khi đi được nửa quãng đường, xe máy tăng thêm 10km/h vì vậy xe máy đến B sớm hơn 30 phút so với dự định. Tính vận tốc dự định của xe máy, biết quãng đường AB dài 120km.
  • Tìm hai số tự nhiên biết rằng tổng của chúng bằng 1006 và nếu lấy số lớn chia cho số nhỏ thì được thương là 2 và số dư là 124
  • Một ôtô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35km/h thì sẽ đến B chậm 2 giờ so với quy định. Nếu xe chạy với vận tốc 50km/h thì sẽ đến B sớm 1 giờ so với dự định. Tính độ dài quãng đường AB và thời điểm xuất phát của oto tại A.
  • Giải bài toán cổ sau Quýt, cam mười bảy quả tươi Đem chia cho một trăm người cùng vui
  • Giải bài toán bằng cách lập hệ phương trình dạng chuyển động
  • Một khu vườn hình chữ nhật có chu vi 280m. Người ta làm 1 lối đi xung quanh vườn ( thuộc đất của vườn) rộng 2m. Diện tích còn lại để trồng trọt là 4256m2 . Tìm diện tích vườn lúc đầu.
  • Hai ô tô đi ngược chiều từ A đến B, xuất phát không cùng lúc
  • Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 14km/h thì đến sớm hơn 2 giờ. Nếu giảm vận tốc đi 4km/h thì đến muộn hơn 1 giờ. Tính vận tốc dự định và thời gian dư định của xe đó.

Xem thêm nhiều bài hơn tại : Đề Thi

Leave a comment