Giải bài toán bằng cách lập hệ phương trình
Contents
Giải bài toán bằng cách lập hệ phương trình dạng chuyển động được thuthuat.tip.edu.vn biên soạn bao gồm đáp án chi tiết cho từng bài tập giúp các bạn học sinh ngoài bài tập trong sách giáo khoa (sgk) có thể luyện tập thêm các dạng bài tập cơ bản và nâng cao để biết được cách giải các bài toán bằng cách lập hệ phương trình. Đây là tài liệu tham khảo hay dành cho quý thầy cô và các vị phụ huynh lên kế hoạch ôn tập học kì môn Toán 9 và ôn tập thi vào lớp 10. Mời các bạn học sinh và quý thầy cô cùng tham khảo tài liệu chi tiết!
- Tải file PDF tại đây: Giải bài toán bằng cách lập hệ phương trình Dạng chuyển động
1. Các bước giải bài toán bằng cách lập hệ phương trình
Bước 1: Lập hệ phương trình:
+ Đặt ẩn và tìm điều kiện của ẩn (nếu có).
+ Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
+ Lập hệ phương trình biểu diễn tương quan giữa các đại lượng.
Bước 2: Giải hệ phương trình.
Bước 3: So sánh với điều kiện và kết luận.
2. Công thức tính quãng đường, công thức tính vận tốc
– Quãng đường bằng vận tốc nhân với thời gian
Công thức:
Trong đó: S là quãng đường (km), v là vận tốc (km/h); t là thời gian (s)
– Các dạng bài toán chuyển động thường gặp là: chuyển động cùng nhau ngược nhau, chuyển dộng trước sau; chuyển động xuôi dòng – ngược dòng; …
3. Công thức tính vận tốc dòng nước
– Vận tốc của cano khi chuyển động trên dòng nước:
Vận tốc xuôi dòng = vận tốc thực của cano + vận tốc dòng nước
Vận tốc ngược dòng = vận tốc thực của cano – vận tốc dòng nước
Vận tốc dòng nước = (vận tốc xuôi dòng – vận tốc ngược dòng)/2
4. Cách giải bài toán bằng cách lập hệ phương trình
Hướng dẫn giải
Gọi vận tốc khi lên dốc là x (km/h)
Vận tốc lúc xuống dốc là y (km/h) (x; y > 0)
Vận tốc xuống dốc lớn hơn vận tốc lên dốc 4km/h nên ta có phương trình:
y – x = 4 (1)
Thời gian từ A đến B lớn hơn thời gian từ B đến A nên từ A đến B là lên dốc và từ B đến A là xuống dốc
Thời gian lên dốc từ A đến B là (giờ)
Thời gian xuống dốc từ B đến A là: (giờ)
Từ (1) và (2) ta có hệ phương trình:
Vậy thời gian lên dốc là 48km/h.
Hướng dẫn giải
Gọi vận tốc xuôi dòng là x (km/h)
Vận tốc ngược dòng là y (km/h) (x; y > 0)
Thời gian cano đi xuôi dòng là:
Thời gian cano đi ngược dòng là:
Tổng thời gian đi xuôi dòng và ngược dòng của cano là 3 giờ 30 phút
Ta có phương trình: (1)
Ta có:
Vận tốc dòng nước = Vận tốc xuôi dòng – vận tốc thực của cano
Vận tốc dòng nước = vận tốc thực của cano – vận tốc ngược dòng
Ta có phương trình:
x – 20 = 20 – y
=> x + y = 40 (2)
Từ (1) và (2) ta có hệ phương trình:
=> Vận tốc dòng nước là: 2km/h
Hướng dẫn giải
Gọi độ dài quãng đường AB là a (km) (a > 0)
Thời gian xe tải đi từ A đến B là (km)
Thời gian xe ô tô đi từ A đến B là: (km)
Vì xe ô tô xuất phát sau xe tải 1 giờ 30 phút = 1,5 giờ nên ta có phương trình:
Vậy quãng đường AB dài 270km.
Hướng dẫn giải
Gọi vận tốc của ô tô là x (km/h), vận tốc của xe máy là y (km/h) (điều kiện x, y > 0)
Sau một thời gian hai xe gặp nhau tại C, xe ô tô phải chạy tiếp hai giờ nữa thì tới B nên quãng đường CB dài 2x (km)
Còn xe máy phải đi tiếp 4 giờ 30 phút = 4,5 giờ mới tới A nên quãng đường CA dài 4,5y (km)
Do đó ta có phương trình: 2x + 4,5y = 180 (1)
Vận tốc của ô tô là x (km/h) => Quãng đường AC là (km)
Vận tốc của xe máy là y (km/h) => Quãng đường CB là (km)
Vì hai xe khỏi hành cùng một lúc và gặp nhau tại C nên lúc gặp nhau hai xe đã đi được một khoảng thời gian như nhau, khi đó ta có phương trình:
(2)
Từ (1) và (2) ta có hệ phương trình:
Vậy vận tốc của ô tô là 36km/h và vận tốc của xe máy là 24km/h.
Hướng dẫn giải
Gọi thời gian dự định là x (giờ), vận tốc của xe lúc đầu là y (km/h) (điều kiện x, y > 0)
Khi đó chiều dài quãng đường AB là xy (km)
Khi xe chạy nhanh hơn 10km mỗi giờ thì vận tốc của xe lúc này là y + 10 (km/h)
Thời gian xe đi hết quãng đường AB là x – 3 (giờ)
Ta có phương trình (x – 3)(y + 10) = xy (*)
Khi xe chạy chậm hơn 10km mỗi giờ thì vận tốc xe lúc này là y – 10 (km/h)
Thời gian xe đi hết quãng đường AB là x + 5 (giờ)
Ta có phương trình: (x + 5) (y – 10) = xy (**)
Từ (*) và (**) ta có hệ phương trình:
Thời gian xe dự định đi hết quãng đường AB là 15 giờ
Vận tốc của xe lúc đầu là 40km/h
Quãng đường AB có độ dài là 15.40 = 600 (km)
5. Bài tập giải bài toán bằng cách lập hệ phương trình
Bài 1: Trên quãng đường AB dài 200km có hai xe đi ngược chiều nhau, xe 1 khởi hành từ A đến B, xe hai khởi hành từ B về A. Hai xe khởi hành cùng một lúc và gặp nhau sau 2 giờ. Tính vận tốc mỗi xe, biết xe hai đi nhanh hơn xe 1 là 10km/h.
Bài 2: Một cano xuôi dòng từ bến A đến bến B với vận tốc trung bình 30km/h. sau đó lại ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 40 phút. Tính khoảng cách giữa hai bến A và B, biết vận tốc dòng nước là 3km/h và vận tốc thực của cano không thay đổi.
Bài 3: Một ô tô chuyển động trên một đoạn đường. Trong nửa thời gian đầu ô tô chuyển động với vận tốc 60km/h, trong nửa thời gian còn lại ô tô chuyển động với vận tốc 40km/h. Tính vận tốc trung bình của ô tô trên cả đoạn đường.
Bài 4: Một cano chuyển động đều xuôi dòng sông từ A đến B mất thời gian 1 giờ khi canô chuyển động ngược dòng sông từ B về A mất thời gian 1,5 giờ biết vận tốc cano đối với dòng nước và vận tốc của dòng nước là không đổi nếu cano tắt máy thả trôi từ A đến B thì mất thời gian là?
Bài 5: Hai bến sông A và B cách nhau 36km. Dòng nước chảy theo hướng từ A đến B với vận tốc 4km/h. Một canô chuyển động từ A về B hết 1 giờ. Hỏi canô đi ngược từ B đến A trong bao lâu?
Bài 6: Hai ô tô khởi hành cùng một lúc từ 2 tỉnh A và B cách nhau 400km đi ngược chiều và gặp nhau sau 5h. Nếu vận tốc của mỗi xe không thay đổi nhưng xe đi chậm xuất phát trước xe kia 40 phút thì 2 xe gặp nhau sau 5h22 phút kể từ lúc xe khởi hành. Tính vận tốc của mỗi xe?
Bài 7: Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn 10km thì đến sớm hơn dự định 3 giờ, nếu xe chạy chậm lại mỗi giờ 10km thì đến nơi chậm mất 5 tiếng. Tính vận tốc của xe lúc ban đầu, thời gian dự định và độ dài quãng đường AB.
Bài 8: Quãng đường AB dài 60km, người thứ nhất đi từ A đến B người thứ 2 đi từ B đến A. Họ khởi hành cùng một lúc và gặp nhau tại C sau 1,2 giờ. Người thứ nhất đi tiếp đến B với vận tốc giảm hơn trước là 6km/h, người thứ hai đi đến A với vận tốc như cũ. Kết quả người thứ nhất đến sớm hơn người thứ hai là 48 phút. Tính vận tốc ban đầu của mỗi người.
6. Giải bài toán bằng cách lập hệ phương trình dạng làm chung làm riêng
Hướng dẫn giải
Gọi a, b lần lượt là số phần công việc mà đội I và đội II làm được trong 1h
Vì 2 đội cùng làm việc thì hoàn thành công việc trong 24h nên trong 1h cả 2 đội làm được công việc
(1)
Trong 10h, đội I làm được 10a phần công việc, trong 15h đội II làm được 15b phần công việc.
Vì khi đó cả 2 đội làm được công việc nên:
(2)
Từ (1) và (2) ta được hệ phương trình:
Vậy đội I làm trong 40h thì xong công việc, đội II làm trong 60h thì xong công việc.
Hướng dẫn giải
Gọi số ngày người thứ nhất làm một mình hoàn thành công việc là x (ngày)
Số ngày người thứ làm một mình hoàn thành công việc là: y (ngày) (x, y > 0)
Một ngày người thứ nhất làm được số công việc là: (công việc)
Một ngày người thứ hai làm được số công việc là: (công việc)
Hai người làm chung một công việc thì sau 20 ngày sẽ hoàn thành. Ta có phương trình:
(1)
Khi làm chung được 10 ngày số công việc làm được là: (công việc)
Người thứ hai vẫn tiếp tục công việc còn lại và hoàn thành trong 15 ngày
Ta có phương trình:
(2)
Từ (1) và (2) ta có hệ phương trình:
Vậy người thứ nhất làm một mình xong công việc trong 60 ngày.
Xem chi tiết tại đây
7. Giải bài toán bằng cách lập hệ phương trình dạng năng suất
Xem chi tiết tại đây
8. Giải bài toán bằng cách lập hệ phương trình dạng tìm số
Xem chi tiết tại đây
—————————————-
Tài liệu liên quan:
- Hai ô tô đi ngược chiều từ A đến B, xuất phát không cùng lúc
- Một oto đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35km/h thì sẽ đến B chậm 2 giờ
- Giải bài toán cổ sau Quýt, cam mười bảy quả tươi Đem chia cho một trăm người cùng vui
- Cho tam giác ABC nội tiếp đường tròn (C) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH
- Từ điểm M ở bên ngoài đường tròn (O; R) vẽ hai tiếp tuyến MA, MB của (O) (với A, B là các tiếp điểm) và cát tuyến MDE không qua tâm O (D, E thuộc (O), D nằm giữa M và E).
- Một xe máy đi từ A đến B với vận tốc và thời gian dự tính trước. Sau khi đi được nửa quãng đường, xe máy tăng thêm 10km/h vì vậy xe máy đến B sớm hơn 30 phút so với dự định. Tính vận tốc dự định của xe máy, biết quãng đường AB dài 120km.
- Tìm hai số tự nhiên biết rằng tổng của chúng bằng 1006 và nếu lấy số lớn chia cho số nhỏ thì được thương là 2 và số dư là 124
- Một ôtô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35km/h thì sẽ đến B chậm 2 giờ so với quy định. Nếu xe chạy với vận tốc 50km/h thì sẽ đến B sớm 1 giờ so với dự định. Tính độ dài quãng đường AB và thời điểm xuất phát của oto tại A.
- Giải bài toán cổ sau Quýt, cam mười bảy quả tươi Đem chia cho một trăm người cùng vui
- Giải bài toán bằng cách lập hệ phương trình dạng chuyển động
- Một khu vườn hình chữ nhật có chu vi 280m. Người ta làm 1 lối đi xung quanh vườn ( thuộc đất của vườn) rộng 2m. Diện tích còn lại để trồng trọt là 4256m2 . Tìm diện tích vườn lúc đầu.
————————————————————
Hy vọng tài liệu Giải bài toán bằng cách lập hệ phương trình giúp sẽ giúp ích cho các bạn học sinh học nắm chắc cách giải hệ phương trình đồng thời học tốt môn Toán lớp 9. Chúc các bạn học tốt, mời các bạn tham khảo! Mời thầy cô và bạn đọc tham khảo thêm một số tài liệu liên quan: Lý thuyết Toán 9, Giải Toán 9, Luyện tập Toán 9, …
Xem thêm nhiều bài hơn tại : Đề Thi